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The group theoretical analysis of Longuet-Higgins molecular symmetry groups 
G(m, n) and GB(m) and their torsional extensions Gq(m, n) and GB2(m) of molecules con- 
sisting of two coaxially rotated parts is presented. The structure of the groups is described 
in terms of direct and semi-direct products. The groups G q (m, n) and GB 2 (m) are shown 
to be group extensions of the groups G(m, n) and GB(m), respectively. All irreducible 
representations of the groups G(m, n), GB(m), and GB2(m) are derived using standard 
techniques of the extension or induction. A restriction method is proposed for derivation 
of irreducible representations of the group Gq (m, n). The class structure of the groups is 
determined and the character tables are given in the most general case. 

1. I n t r o d u c t i o n  

Dur ing  the past  32 years many papers have been written on the symmetry  anal- 
ysis o f  molecules consisting of  two coaxial rotors  using extended permutat ion-  
inversion groups [1-22] (see also Table 1). With the exception ofref .  [6] these papers  
have dealt  with individual molecules not  considering common  propert ies of  certain 
classes o f  molecules. Nevertheless, in the time of  computer izat ion such general con- 
siderat ion of  the problem is desirable as it allows to leave the computers  most  o f  the 
tedious work.  

Recent ly  [23,24] the author  has proposed  general symmetry  analysis o f  such sys- 
tems. This symmetry  analysis was concerned with classifications of  torsional  and 
rota t ional  states and with the corresponding selection rules of  a general molecule 
consisting of  two coaxially rotating parts. It used (but  did not  present) results of  
extensive group theoretical analysis o f  the corresponding permutat ion-inversion 
and extended permutat ion-inversion groups. 

The work  presented here follows two aims: to show the relations between theper- 
mutation-inversion groups and their extensions and to derive complete sets o f  ordin- 
ary irreducible representations o f  the above-mentioned symmetry groups. U p  to this 
time, to author ' s  knowledge,  group theoretical analysis o f  these groups has not  
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Table 1 
Review of fundamental original papers where the extended molecular symmetry 
for symmetry analysis. 

groups were used 

Authors Year Molecule Original notation Present notation 

Hougen, Bunker [1-5] 1964-1967 2-butine G36, G~6 GB(3), GB2(3) 
Bunker and Papou~ek [6] 1969 linear molecules - 
Papou~ek et al. [7] 1971 ethylene G16, G+6 GB(2), GB 2 (2) 

nitromethane GI~, G+2 G(3, 2), G2(3, 2) 
~(2) GB(2), GB 2 (2) Merer and Watson [8] 1973 ethylene G16, ~16 

Dellepiane, Gussoni 1 9 7 3  XY2-C=C-XY2 G4, G~ GB(1 ), GB 2 (1) 
and Hougen [9] 
Yamada, Nakagawa 1974 X2Y2 D~ GB( 1 ), GB 2 (1) 
and Kuchitsu [10] 
Hougen [11]; 1980; 1983 ethane G36, G~6 GB(3), GB2(3) 
Henry et al. [14] 

~(2) GB(2), GB2(2) Hougen [12]; Ohashi 1981; 1985 hydrazine GI6, ~16 
and Hougen [16] 
Hougen and 1983 CF3NO C3v, C3m.v G(3, 1), Gin(3, 1 ) 
DeKoven [13] 
Hougen and Ohashi [15] 1985 HF dimer G4, G~ GB(1), GB2(I) 
Hougen [17] 1985 water dimer Gl6, GI 2) GB(2), GB2(2) 
Ohashi and Hougen [18] 1 9 8 7  methylamine G12, G~I 2 G(3, 2), G m (3, 2) 
Hougen, Meerts 1991 H3C-SiH3 Gl8, G~I s G(3, 3), Gin(3, 3) 
and Ozier [19] 
Hougen, Kleiner 1 9 9 4  acetaldehyd C3~, C~r~ G(3, 1), G m (3, 1) 
and Godefroid [20] 
Sold~.n [21] 1994 H + G16, G16(EM) GB(2), GB2(2) 
Sold~n, ,Spirko 1996 H+D2 Gs, G~ G(2, 2), G~(2, 2) 
and Kraemer [22,23] 

been presented on such a general level. Any permutation-inversion group (or its 
extension) of  this type can be treated as a special individual case of  the groups pre- 
sented below and the determination of its irreducible representations is reduced to 
substitution of  a few parameters into simple general formulas. This general 
approach to the symmetry analysis is similar to the general approach of  
Balasubramanian to the nuclear spin statistics of  weakly bounded complexes [25]. 

This paper is organised as follows: in section 2 the notation is introduced, and 
the groups are defined by means of generators and relations using conventions 
introduced in ref. [23]. In section 3 structures of  the groups are described by means 
of  direct and semi-direct products. In the case of  the Longuet-Higgins molecular 
symmetry groups, i.e. the permutation-inversion groups [26], the Woodman 
approach is used [27]. (Thus, the "finest" group structures used here are semi-direct 
and direct groups products, although some authors [25,28,29] have also used a 
group wreath product structure [30] for analysis of  symmetry groups of complexes 
which contain identical rotors.) Mutual relations between groups are expressed in 
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terms of group extensions [31 ]. The situation here is similar to the case of electronic 
double groups, which are expressed as central extensions of the corresponding 
point groups [32-34]. In the case of identical rotors, extensions are also central. In 
the case of non-identical rotors, the extensions are not central in general. In 
section 4 all irreducible representations of these groups are derived using standard 
techniques of the extension and induction [35,36] and one nonstandard method, 
called here the restriction. Section 5 is devoted to class structures and character 
tables of the groups. In appendix A a short review of the language of group exten- 
sions is given. Appendix B is devoted to the restriction method for determination of 
irreducible representations of certain factor groups. 

2. N o t a t i o n  and basic definitions 

In this paper, the symbol " :="  will be used for definitions, the commutator and 
anticommutator of group elements a and b are defined as [a, b] := aba-Xb -1 and {a, 
b} := abab, respectively, and the direct and semi-direct products are denoted by ® 
and A, respectively (the latter with the normal subgroup at the first position). By 
the word "representation" we mean ordinary representations, in general, over the 
field of complex numbers. 

In ref. [23] the presentations of the Longuet-Higgins molecular symmetry 
groups (permutation-inversion groups [26]) and their torsional extensions [37] are 
derived for the molecules consisting of two coaxial m-fold and n-fold rotors, and 
the systematic notation of these groups is also introduced. In the case of non-identi- 
cal rotors the molecular symmetry group is denoted as G(m, n) and its correspond- 
ing torsional extension as G q (m, n), where the parameter q of the extension depends 
on the fractional representationeq, gcd(p, q) = 1, of a scalar inertia parameter of the 
internal rotations [13,19,23]. In the case of identical rotors (n = m) the molecular 
symmetry group is denoted as GB(m) and its torsional extension as GB2(m) (p = 1 
and q -- 2 in this case). In Table 1 the notation of already used groups of these types 
is related to the notation proposed in ref. [23] and used here. 

The  presentations of the symmetry groups mentioned above are the following 
[231: 

DEFINITION 1 
The group G(m, n) is generated by elements x, y, and z and relations 

X m = y n  = Z2 = [x,y] = {z,x} = (z,y} = e. (1) 

DEFINITION 2 
The group Gq(m, n) is generated by elements X, Y, and Z and relations 

y q m  = yqn = Z 2 = x m y n  = [X, Y] = {Z,  X }  = {Z,  Y}  = E .  (2) 
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The group Gq(3, 1) is known as C~3 v (see e.g. ref. [13]), the group Gq(3, 2) is known 
as G-~I 2 (see e.g. ref. [18]), the group Gq(3, 3) is known as G~18 (see e.g. ref. [19]), and 
the group G3(2, 2) is known as G3(8) (see e.g. ref. [22]). 

DEFINITION 3 
The group G B ( m )  is generated by elements x, y, z, and w and relations 

x m = ym = z 2 = w 2 = [x,y] = { z , x }  = { z , y }  = [w,z] = e ,  (3) 

w x w  : y .  (4) 

DEFINITION 4 
The group G B  2 (m)  is generated by elements X, Y, Z, and W and relations 

X ~  = y2m = Z 2 = W 2 = y , , y m  = [X, Y] = { Z , X }  = {Z, Y} 

= [ w , z ]  = (5) 

W X W  = Y .  (6) 

The group GB2(1) is known as G 2 (see e.g. ref. [15]), the group GB2(2) is the 
known group G26 (see e.g. ref. [21]), and the group GB2(3) is known as G~36 (see e.g. 
ref. [11]). 

The generating elements (in the corresponding order) are called the canon ica l  

genera to r s .  (It is obvious that the canonical generators of G B ( m )  or G B 2 ( m )  are not 
algebraically independent, but, as we shall see below, these presentations are very 
useful.) In the following text we shall suppose that q i> 2 and m t> n, and the groups 
defined above are collectively called the s y m m e t r y  groups .  

3. G r o u p  structure  

This section deals with a basic analysis of the symmetry groups. Many theorems 
presented below are straightforward consequences of presentations of the corre- 
sponding groups. Therefore proofs which are obvious or are similar to the ones pre- 
sented before are omitted. The terminology of group extensions used in this paper 
is given in Appendix A. 

3.1. GROUPS G(m, n) AND Gq(m, n) 

THEOREM 5 
The group G ( m ,  n) possesses the following structure: 



P. Sold[m / Extended symmetry groups 335 

m ~ l ,  

m = 2 and n = 1, 

m~>3 and n = 1, 

m = 2 and n = 2, 

m>~3 and n~>2, 

G(1, 1) = G(z) ; 

G(2, 1) = G(x) ® G(z); 

G(m, 1) = G(x) A G(z);  

6(2, 2) = G(x) ® G(y) ® G(z); 

6(m,n) = (6(x) ® 6(y)) A 6 @ .  

Proof 
The distinction between the cases of  direct and semi-direct products is easily seen 

f rom the equat ion aza -1 = z a  - 2 ,  where a = x, y. []  

COROLLARY 6 
The order  of  the group G(m, n) is 2mn. 

Proof 
The group structure allows to express unambiguously the elements of  G(m, n) 

in the form xkytzJ, k = O, 1 , . . . , m -  1;l = 0, 1 , . . . , n -  1;j = 0, 1. []  

REMARK 1 

The group G(m, 1) is the dihedral group Dm [35, p. 22]. 

EXAMPLE 1 
Suppose that  gcd(m, n) = 1. In this case we may  exclude generators x and y and 

replace them by u = xy. We obtain the presentation of  G(m, n) in the form 

u mn = z 2 = uzuz = e. (7) 

Tha t  means  that  G(m, n) is isomorphic to G(mn, 1), i.e. it is the dihedral  group 
Dmn. 

PROPOSITION 7 
G(X, Y) ~ G(X) ® G(Y) in the group Gq(m, n). 

? roo f  
The commutat iv i ty  between X and Y still holds, but  the demand  on trivial inter- 

section of  G(X) and G(Y) is not  satisfied because E ~ yn = X-re. [] 

THEOREM 8 

The group Gq(m, n) possesses the following structure: 
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m = l  a n d q = 2 ,  

m~>2 and n = 1, 

n>~2, 

G2(1, 1) = G(X) @ G(Z);  

Gq(m, 1) = G(X) A G(Z) ;  

Gq(m, n) = G(X, Y) A G(Z). 

EXAMPLE 2 
The group  Gq(rn, 1) is i somorphic  to G(qm, 1), i.e. it is the dihedral  group Dqm. 

EXAMPLE 3 
Suppose that  gcd(m, n ) =  1. Then the 

G(qmn, 1), i.e. it is the dihedral  group Dqmn. 
group Gq(m, n) is i somorphic  to 

Now,  let us look at the relation of  the groups G(m, n) and Gq(m, n). 

THEOREM 9 
The group Gq(m, n) is a q-fold cyclic extension of  the group G(m~ n) by means  

of  the subgroup  G(Xm). 

Proof 
Genera tors  of  the group G(m, n) satisfy relations of  Gq(m, n) (when the capital  

letters are subst i tuted by the corresponding small letters). Tha t  means  that  a m a p  
~, ~(A) := a for a = x, y, z, and the corresponding capital  letter A, can be extended 
to an ep imorph i sm of  Gq(m, n) into G(m, n). The kernel of  this ep imorph i sm is the 
g roup  G(X m) = G(yn) which is a cyclic group of  order  q. It  follows tha t  the groups  
Gq (m, n ) / G( X m) and G( m, n) are isomorphic.  []  

COROLLARY 10 
The order  of  the group Gq(m, n) is equal to 2qmn. 

Proof 
The group  structure allows to express unambiguous ly  the elements of  Gq(m, n) 

intheformXkYtZJ, k = O, 1,...,qrn- 1;l = 0, 1 , . . . , n -  1;j = 0, 1. []  

COROLLARY 11 
I f  gcd(q, m) = 1 and gcd(q, n) = 1, then Gq(m, n) is a split t ing extension of  the 

g roup  G(m, n) and 

Gq(m,n) = G(X m) A ((G(X q) @ G(Yq)) A G ( Z ) ) .  (8) 

Proof 
F r o m  the p roo f  of  the above theorem,  it is obvious that  the subgroup  G(X, Y) 

of  Gq(m, n) is the q-fold cyclic extension of  the subgroup  G(x) ® G(y) of  G(m, n). I f  
gcd(q, m) = 1 and gcd(q, n) = 1, then it follows that  gcd(q, ran) = 1. F r o m  Schur 's  
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theorem [31, p. 201], we conclude tha t  G(X, Y) is a split t ing extension of  
G(x) ® G(y), and it is easy to verify that  the corresponding image  of  G(x) ® G(y) is 
the subgroup  G(X  q) ® G(Yq).  [] 

C O R O L L A R Y  12 

I fq  = 2, the Gq(m, n) is a central extension of  the group G(m, n). 

Proof 
Because x m z  = Z X  -m= Z X  m, the element X m belongs to the center of  

Gq(m, n). [] 

C O R O L L A R Y  13 

I fq  = 2 and mn is odd,  then 

Gq(m,n) = G(X m) ® ((G(X q) ® G( Yq)) A G(z)) , 

where ( G( X q) ® G(Yq)) A G(z) is i somorphic  to G(m, n). 

Proof 
Odd mn implies that  m and n are odd. 

(9) 

[]  

E X A M P L E  4 

Suppose q = 3, m = 8, and n = 4. Let us show that  we may  express the generators  
X and Y by means  of  X 8, X 3, and  y3. We need to find such integers i, j ,  k, and  I 
tha t  

im + jq = l and kn + lq = l . 

In this case we obtain i = 2 , j  = - 5 ,  k = 1, and  l = - 1 and 

X = (X8)2(X3) -5 and Y = ( . , xv8) - l (y3 )  -1  . 

T H E O R E M  14 

The group  G(qm, qn) is a q-fold cyclic extension of  the g roup  Gq(m, n). 

Proof 
Because the relations of  the group Gq(m, n) include all relations of  the g roup  

G(qm, qn), using von Dyck 's  theorem [38, p. 130], it follows that  G q (m, n) is a factor  
g roup  of  G(qm, qn). Suppose G(qm, qn) is generated by the canonical  generators  2, 
~, and  ~,. Then,  the kernel of  the natural  ep imorph i sm of  G(qm, qn) to Gq(m, n) is 
generated by the element  2m~  of  order  q. []  

2.3. G R O U P S  GB(m) AND GB 2 (m) 

For  the groups  GB(m) and GB2(m) similar theorems are formula ted  as in the 
cases of  groups  G(m, n) and Gq (m, n). 
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THEOREM 15 
The group GB(m) possesses the following structure: 

m ~ l ~  

m = 2 ,  

m~>3, 

GB(1) = G(z) ® G(w) = G(1, 1) @ G(w); 

GB(2) = G(x) @ G(y) @ G(z) @ G(w) = G(2, 2) ® G(w) ; 

GB(m) = ((G(x) ® G(y)) A (G(z) ® G(w)) = G(m,m) A G(w). 

COROLLARY 16 
The order of  the group GB(m) is 4m 2. 

Proof 
The group structure allows to express unambiguously the elements of  GB(m) in 

the form xkyzJw i, k = O, 1,.. . ,  m - 1; l = O, 1,..., n - 1 ;j, i = O, 1. [] 

REMARK 2 
In the case of m~>3 the semi-direct product  (G(x) ® G(y)) A (G(z) ® G(w)) is 

the wreath product  [25,28-30]. 

THEOREM 17 
The group GB 2 (m) possesses the following structure: 

m = l ,  G B 2 ( 1 ) = G ( X ) ® G ( Z ) @ G ( W ) = G 2 ( m , m ) ® G ( W ) ;  

m ~ 2 ,  G B 2 ( m ) = G ( X , Y ) A ( G ( Z ) ® G ( W ) ) = G 2 ( m , m ) A G ( W ) .  

THEOREM 18 
The group GB2(m) is a 2-fold extension of  the group GB(m) by means of  the sub- 

group G(xm). 

COROLLARY 19 
The order of  the group GB2(m) is 8m 2. 

Proof 
The group structure allows one to express unambiguously the elements of  

GB2(m) in the form x k y t z J w  i, k = O, 1, ..., q m - 1 ;  l = 0, 1, . . . ,  n - 1 ;  j ,  
i = 0 ,  1. [] 

COROLLARY 20 

I fm is odd, then 

GB2(m) = G(x m) ® ((G(xb ® (c(z) ® c(w))),  (10) 
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where ( ( G( X 2) ® G(y2)) A ( G( Z) ® G( W) ) ) is isomorphic to GB(m). 

Proof 
The semi-direct product  structure and the isomorphism are obvious. Thus, it is 

sufficient to prove that the second group is also a normal  subgroups of  GB 2 (m). The 
s ta tement  immediately follows f rom the equation 

x m w  = w y m =  w x - m =  WX m. [] 

THEOREM 21 

The group GB(2m) is a 2-fold extension of  the g r o u p  G B 2 ( m ) .  

4. Representations 

This section is devoted to derivation of  irreducible representations (irreps) of  
the symmetry  groups. In the cases of  the groups G(m, n), GB(m), and GB 2 (m) the 
complete  set of  irreps is derived using the induction and extension techniques [35, 
pp. 313-365], [36, pp. 132-162]. The completeness of  such obtained set of  irreps is 
evident f rom the discussion provided in ref. [36, pp. 157-162]. (Another  way to 
prove this completeness is to use the fact that  the sum of  squares of  the irrep dimen- 
sions over the complete set of  irreps is equal to the order of  the group [35, p. 186].) 
In the case of  the group Gq(m, n) the irreps are derived using the restriction method  
derived in Appendix B. (In the remainder  of  this section the word "extension" is 
used only for extensions of  representations of  a subgroup to representations of  an 
entire group.) 

4.1. GROUP G(m, n) 

In this subsection the semi-direct product  structure (G(x) ® G(y)) A G(z) is used 
for construct ion of  all irreps of  the group G(m, n). 

Let us denote representations of  the group G(x) N G(y) by I'kt with the conven- 
• ik2~ il~ ' tlons Pk,t = (x) = e and r'k,l(y) = e , k = 0, 1, . . . ,  m - 1, l = 0, 1, . . . ,  n - 1. 

Because I'k,t(zaz) = Pk,t(a -1), a = x, y, the orbit of  a representat ion Pk,t under  the 
action of  the group G(z) is formed by this representation itself and the representa- 
tion ~'m-k,n-l .  Then, the extension of  I'k,t exists if and only if I'k,l = [~m-k,n-I [35, 
p. 353], i.e., 

e i2k~ : e i21~ -- 1. (11 ) 

This gives only values k = 0 for m odd, k = 0, m/2 for rn even, l = 0 for n odd, and  
l = O, n/2 for n even. F r o m  the relation z 2 = e it is obvious that  the image o f z  m a y  
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be only 1 or -1 .  Thus, the extended 1-irreps can be distinguished using three sym- 
bols. The letters A and B distinguish the values 1 and - 1 of the 1-irrep on the gen- 
erator y, the signs + and - in the superscript of x, and subscripts 1 and 2 ofz. 

If the extension is impossible, then it means that I'k,l ¢ Fm-k,,,-l. In this case the 
representation Ek,I of G(m, n) induced from I'k,l is irreducible (see Mackay's irredu- 
cibility criterion for induced representations in ref. [39, p. 59]). 

Now, a review of all irreps of G(m, n) may be given. Let Z(m, n) be the maximal 
set of double-subscripts of nonequivalent 2-irreps of G(m, n). We distinguish cases 
of different parity of m and n by means of the ordered pair (P(m), P(n)), where 
P(k) = o ifk is odd and P(k) -- e ifk is even. 

In the case (o, o) there are only two 1-irreps: A1 and A2, and the set 

Z(m,n)={(s,t);s=O, 1,. . . ,m- l,t= l ,2 , . . . ,@l}  

to{(s, 0 ) ; s = l , 2 , . . . , m - - - 2  1} 

contains (mn - 1)/2 elements. 
+ + - and A~-, and the set In the case (e, o) there are four 1 -irreps: A 1 , A 2 , A 1 

Z(m'n)= { (s't);s= l'2''" m''--2 1 , t = 0 , 1 , . . . , n - 1 }  

tO s,t);s=O,~,t= 1 , 2 , . . . , ~  

contains (ran - 2)/2 elements. 
In the case (o, e) there are four 1-irreps: A1 +, A2,B 1 +  +, and B +, and the set 

Z(m,n)= {(s,t);s= l ,2, . . . ,m- l,t=O, 1,...,2n 1} 

to{(s,t);s= l ,2, . . . ,m- ,t=0,2} 

contains (mn - 2)/2 elements. 
In the case (e, e) there are eight 1-irreps: A~-, A~-, B +, B~-, Ai-, 12,  Bi-, and B2, 

and the set 

Z(m,n) = {(s,t);s= l,2, m n} . . . , ~ -  1,t = 0, 1 ,2 , . . . , ~  

{( m m n 1} tO s,t);s=O,~,-~+ l , . . . ,m-  l,t= l,2,...,-~- 

contains (ran - 4)/2 elements. 
The 2-irrep Es, t may adopt by a similarity transformation the following orthogo- 

nal form: 
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and 

(cos(s-~)  - s i n ( s - ~ ) )  
Es,t(x) = \ sin(s-~) cos(s-~) _ ' 

( c o s ( t ~ )  - s i n ( t ~ )  

Es,t(y) = \ s in ( t~)  cos ( t~)  ] 

(1 0) 
Es,t(z) = 0 -1 " 

E X A M P L E  5 

Suppose m = 4 and n = 2. Then, the group G(4, 2) has eight 1-irreps and 

2(4, 2) = {(1,0), (1, 1)}. 

E X A M P L E  6 

Suppose n = rn. In the case of m odd G(m, m) possesses four 1-irreps and 
(m 2 - 1)/2 2-irreps. In the case of m even the group possesses eight 1-irreps and 
(rn 2 - 4) /2  2-irreps. 

4.2. G R O U P  GB(m) 

In this subsection the semi-direct product structure GB(m) = G(m, m)/', G(w) is 
used in order to determine all irreducible representations of the group GB(m). 

+ + Because wxw = y, it is obvious that only 1-irreps A~, AE., B 1, and B~- of  
G(m, m) can be extended to 1-irreps of GB(m). Because w- = e, it follows that the 
image of w may be only 1 or - 1. Thus, the 1-irreps of GB(m) can be distinguished 
using three symbols. The letters A and B distinguish the values 1 and - 1 on the gen- 
erator w, the signs + and - in the superscript o fx  (and also y), and subscripts 1 and 
2 ofz. 

For  a 2-irrep Ek,t of G(m, m) the condition of possible extension is satisfied in 
two c a s e s : l = k f o r k < ~ a n d l = m - k f o r k > ~ . F o r k < ~ w e o b t a i n t w o 2 -  
irreps E~ -'+ and E~'- of GB(m), 

E~ -'+(w) = diag(1, 1), (12) 

E~-'-(w) = d i a g ( - 1 , - 1 ) ,  

and for k > ~ we have 

E~"-(w) = d i a g ( a , - a ) ,  

(13) 

(14) 
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E~ -'+ (w) = d iag( -  1, 1). (15) 

These results are obtained as solutions of matrix equations which arise from the 
generating relations of the group using the orthogonal form of 2-irreps of G(m, m). 
Similarly independent distinction is given by characters 

x(E+'+; w) = 2,. (16) 

x(E~"-; w) = - 2 ,  (17) 

x(E~'-;zw) = 2, (18) 

x(E;'+; z w )  = - 2 .  (19) 

From 2-irreps Ek,t of G(m, m), k ¢ l and k + l ¢ m, 4-irreps of GB(m), denoted 
Gk,t, are obtained by induction. 

Moreover, in the case of m even, by induction the following 2- irreps of GB(m) 
are obtained: El f r o m  A 1 (or  Bi t') and E2 from A~- (or B+). 

Results of this subsection may be summarized as follows: 
The case ofm odd. The two 1-irreps A1 and A2 of G(m, m) are extended into four 

1-irreps A +, A~-, A 1, and A~. The group has 2m - 2 nonequivalent extended 2- 
irreps E +'+ and E-['-, extended from Et,t, and E +'- and E~ -'+, extended from Em-t,t, 
where t = 1,2, . . . ,  (m - 1)/2. There are no 2-irreps of GB(m) induced from 1-irreps 
of G(m, m). And the group possesses (m - 1 )2/2 4- irreps Gs,t induced from 2-irreps 
Es,t ~f the group G(m, m). From them, using the equivalence relation Gk,t ,.o Gt,k, 
(m41) nonequivalent 4-irreps may be chosen. 

The case ofm even. The four 1 -irreps A +, A +, Bi-, and BE of G(m, m) are extended 
into eight 1-irreps A +, A~-, Ai-, A~-, B~-, B +, Bi-, and BE. The group has 2 m -  4 
nonequivalent extended 2-irreps Et +'+ and E~-'-, extended from Et,t, Et +'- and E1 '+, 
extended from Et,,,,-t, where t = 1, 2, . . . ,  ~ 1. It has two 2-irreps E l and Ea of 
GB(m) induced from the 1-irreps Bi ~ and B + of G(m, m) respectively. And the group 
possesses m(m - 2)/2 4-irreps Gs,t induced from 2-irreps Es,t of the group G(m, m). 
From them, m(m - 2)/4 nonequivalent 4-irreps may be chosen. 

EXAMPLE 7 

Suppose m = 4. Then the group GB(4) has eight 1-irreps, two induced 2-irreps, 
four extended 2-irreps, and two 4-irreps. 

4.3. GROUP Gq(m, n) 

In this subsection the factor-group relation G(qm, qn)/G(2m~) ~ Gq(m, n) is 
used for constructing all irreps of Gq(m, n) by means of the restriction method 
derived in Appendix B. 
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The only Gq(m, n)-restriction condition for an irrep of  the group G(qm, qn) is 
given by the word 2"y ' .  

In the case of q odd or q and m + n even, each 1-irrep of  G(qm, qn) can be 
restricted to the group Gq(m, n). In the case ofq  and m even and n odd, the 13 irreps 
cannot  be restricted. In the case ofq and n even and m odd, the irreps with the minus 
sign in the superscript cannot  be restricted. 

In the case of 2-irreps Es,t of G(qm, qn), the Gq(m, n)-restriction condit ion is 
equivalent to the following selection rule: 

s + t  
27r = 0 mod  27r. (20) 

q 

Thus, the set 2"q (m, n), which parameterizes the nonequivalent 2-irreps of  the group 
Gq(m, n), is the following: 

s + t  . 
2"q(m,n) = {(s, t) E 2"(qm, q n ) ; - -  is an integer}. 

q 

In the following, summary cases of  different parity of q, m, and n are distin- 
guished by the ordered triad (P(q), P(m), P(n)). (For irreps of Gq(m, n) the same 
notat ion is used as in the case of the group G(m, n). In the case of  a possible confu- 
sion the irreps of  the corresponding groups are distinguished.) 

In the case of  (o, o, o), there are only two 1-irreps: A1 and A2, and the set 
2"q (m, n) contains (qmn - 1)/2 elements. 

In the case of  (e, o, o), there are four 1-irreps: A +, A~-, B{, and B 2, and the set 
2"q (m, n) contains (qmn - 2)/2 elements. 

In the case of (o, e, o) and (e, e, o), there are four 1-irreps: A~-, A +, Ai-, and A~-, 
and the set 2-q(m, n) contains (qmn - 2)/2 elements. 

In the case of (o, o, e) and (e, o, e), there are four 1-irreps: A~-, A +, B +, and B +, 
and the set2"q(m, n) contains (qmn - 2)/2 elements. 

In the case of (o, e, e) and (e, e, e), there are eight 1-irreps: A +, A +, B~-, B~-, Ai-, 
A~-, Bi-, and B~-, and the set 2"q (m, n) contains (qmn - 4)/2 elements. 

EXAMPLE 8 
Suppose q = 3, m = 4, and n = 2. Then, the group G(12, 6) has eight 1-irreps 

and 34 2-irreps. The group G3(4, 2) has eight 1- irreps and 

2 = {(1,2), (2, 1)(3, 0), (3, 3), (4, 2), (5, 1), (7, 2), (8, 1), (10, 2), (11, 1)}. 

EXAMPLE 9 
Suppose q = 2 and n = m, 2-irreps of G 2(m, m) are determined by the set of 

parameters  

Z2(m, m) = {(s, t) E Z(2m, 2m); s + t is even}. 
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In the case ofm odd G 2 (m, m) possesses four 1-irreps and m 2 - 1 2-irreps. In the case 
ofm even the group possesses eight 1-irreps and m 2 - 2 2-irreps. 

4.4. G R O U P  GBI(m) 

Due to the same semi-direct product structure as in the case of the group 
GB(m) the extension and induction techniques may be applied to the irreps of the 
group GZ(m, m) in order to obtain all irreps of the group GBE(m). (Of course, we 
have also the possibility to derive all irreps of GBE(m) using the restriction method 
applied to the relation GB( 2m) / G( X mym) ~ GBE(m).) 

In the case ofm odd, there are eight 1-irreps of GB2(m) extended from four irreps 
of G 2 (m, m). There is no 2-irreps of GB 2 (m) induced from 1-irreps of G 2 (rn, m). For 
the extension 2m - 2 2-irreps of GE(m, m) is used, and 4m - 4 nonequivalent 2- 
irreps of GBE(m) is obtained. For the induction (m - 1) 2 2-irreps of GE(m, m) is 
used, and (m - 1)2/2 nonequivalent 4-irreps of the group GB 2 (m) is obtained. 

In the case ofm even, there are eight 1-irreps of GB 2 (m) extended from four irreps 
of G 2 (m, m) and two nonequivalent 2- irreps of GB 2 (m) induced from the other four 
1-irreps of GE(m, m). For the extension 2m - 2 2-irreps of G2(m, m) is used, and 
4 m -  2 2-irreps of GBE(m) is obtained. For the induction m E -  2rn irreps of 
G2(m, m) is used, and m(m - 2)/2 nonequivalent 4-irreps of the group GB2(m) is 
obtained. 

EXAMPLE 10 

Suppose m = 4. Then, the group GB2(4) has eight 1-irreps, 12 extended 2-irreps, 
2-induced 2-irreps, and four induced 4-irreps. 

5. Character tables 

This section is devoted to symbolic character tables of the discussed groups. 
For this purpose derivation of the conjugacy class structure is shortly described. In 
general, it should be mentioned that the parities of the integers m, n, and q play a sig- 
nificant role in the class structure of the groups. 

The class structure of the group G(m, n) may be simply derived using the conju- 
gacy relations x-lzx = x - 2 z  and y-lzy = y-2z. 

From the known class structure of G(m, m) the class structure of the group 
GB(m) may be determined using the relations wxw=y and y-lxkytwy 
= x k + l y l - l w .  

Conjugacy classes of the group Gq(m, n) may be derived from the classes of the 
group G(qm, qn) by means of the corresponding factorization. 

Finally, types of conjugacy classes of the group GB2(m, m) may be determined 
in the same manner from classes of G 2 (m, m) as in the case of the group GB(m) or in 
the same way from classes of GB(2m) as in the case of the group Gq(m, n). 
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Table 2 
Symbolic character  table of the groups G(m, n) in the case ofrn and n even. 

345 

Class S~ S~ Sy S~v Skj & S~ S~ S~y 
No of elements 1 I 1 l 2 nm/4 nm/4 nm/4 nrn/4 

A] ~ 1 1 1 1 1 1 1 1 1 
A~ 1 1 1 1 1 - 1  - 1  - 1  - 1  
B] ~ 1 l ( - 1 )  "/2, ( - 1 )  "/2 ( - 1 )  / 1 - 1  1 - 1  
B~ ~ 1 1 ( - 1 )  "/" ( - 1 )  "/2 ( - 1 )  t - 1  1 - 1  1 

)m/2 A 7 1 (-1)7£/22 1 ( -1  ( - 1 )  k 1 1 - 1  - 1  
A~ 1 ( - 1 )  / 1 ( - 1 )  m/2 (--1)~k --1 --1 1 1 
B 1 1 ( - 1 )  m/2 ( - 1 )  "/2 (--1)(re+n)(! (--1) 1 --1 --l  l 
B~ 1 ( - 1 )  m/2 ( - 1 )  "/2 (-l)(m+n)/2 (_l) ,~k --1 1 1 --1 
Es,, 2 ( -  1)'2 ( - 1 ) ' 2  ( -1 ) '+ t2  2 c o s ( ~ 2 r r )  0 0 0 0 

The symbolic character tables of the groups G(m, n) and GB(m) are given in the 
most complicated cases of m and n even in Table 2 and Table 3, respectively. The 
character  tables of the other cases are obtained by omitting the corresponding rows 
and columns in these tables. The character tables of the extended groups Gq(m, n) 
and GB2(m) are obtained from the character tables of the groups G(qm, qn) and 
GB(2m) using the restriction method (also omitting the corresponding rows and 
columns in these tables). 

Table  3 
Symbolic character  table of the groups GB(m) in the case ofm even. 

Class Ce Cxy Ck,I C z Cxy C:x,y C~' CZk 
No. of  
elements 1 1 4(2) m2/4 m2/4 m2/2 2re(m) 2re(m) 

Ai ~ 1 1 1 1 l 1 1 1 
A + 1 1 1 - 1  - 1  - 1  1 - 1  

2 
A [  1 1 1 1 1 1 - 1  - 1  
A~ 1 1 1 - 1  - 1  - 1  - 1  l 

(--1)k+l k+t B+ 1 1 (--1) k+' I 1 -- l  1) k+t (--1)  
I 1)k+~+l B + l l ( - l )  k+' - I  - I  1 ( -  

( k+t _--l)k+l+l 1)k+/+l B{  1 1 - 1 )  1 1 - 1  ( - I )  k+t+l (--l)k+ l 
B~ 1 1 ( - 1 )  k+l - 1  - 1  1 ( -  
El 2 ( -1 ) " /22  ( - 1 )  k + ( - 1 )  l 2 - 2  0 0 0 
E2 2 (-1)m/22 ( - 1 )  k + ( - 1 )  / - 2  2 0 0 0 
El!-'+ 2 2 2 cos &~ i2r~ 0 0 0 2 cos k+; i2rr 0 
ET'-  2 2 2 c o s @ i 2 r r  0 0 0 - 2 c o s ~ i 2 r r  0 
E ~ , -  2 2 2 cos k-t i2rr 0 0 0 0 2 cos k-I i2rr 
E]  '+ 2 2 2 cos xml i27r ,, 0 0 0 0 - 2  c o s @  i2rr 
Gs,e 4 ( -  l)S~-~4 2 c o s ~ 2 r r  0 0 0 0 0 

+2 cos ~ 27r 
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6. Discussion 

Finally, let us briefly mention the main questions not solved in this study. 
From the point of view of application it is desirable to investigate the following 

objects concerning the above symmetry groups: projective representations, electro- 
nic spin double groups, and symmetry invariants and covariants. 

Another question arises when one compares the above extended groups with 
another kind of extended groups - electronic double groups. Several authors [40- 
42] proposed to use some special projective representations (called spinor represen- 
tations) of the point groups instead of the ordinary representations of the double 
groups. Their approach is based on the fact that the electronic double groups are 
central extensions of the point groups. In this case of the central extension there 
exists a certain correspondence between projective representations of the corre- 
sponding factor groups and the ordinary representations of the extension. The 
group GB2(m) is also the central extension of the group GB(m). It seems to be possi- 
ble, in this case, to f ind an analog to the spinor representations following the approach 
of[40-42] modified to the groups GB(m). The case of groups G q (m, n) and G(m, n) is 
rather complicated because, excluding the case of q = 2, the extensions are not cen- 
tral. It would be interesting to investigate relations between projective representa- 
tions o f  the group G (m, n) and ordinary representation of  the group G q (m,  n ) .  

All above-mentioned problems are proposed for possible further study. 
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Appendix A. Group extensions 

Let us recall the definition of a group homomorphism. Let G and H be groups. 
A map qo : G ~ H is a homomorphism if ~(ab) = ~o(a)qo(b) for any a, b E G. A 
homomorphism qo is monomorphic ifcp(a) -- en implies a -- ea. A homomorphism 
~o is epimorphic if qo(G) -- H. An isomorphism is a homomorphism which is simul- 
taneously monomorphic and epimorphic. 

Let ker(qo) := {g E G [ ~(g) = e/4}. Then the fundamental theorem on homo- 
morphisms states that the factor group G/ker(~o) is isomorphic to the group ~o(G) 
[35, p. 6]. 

In this paper the following definition of group extensions is used: A group G is 
called an extension of  a group H by means o f i t s  subgroup F if  and only if there exists 
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an epimorphism qo : G --~ H such that ker(~o) = F,  i.e. F is a normal  subgroup of G 
and the factor group G / F  is isomorphic to the group H [35, p. 23]. (In refs. [31, 
p. 121] the group G is called the extension of the group F by means of the group 
H.) 

An extension is called a split t ing extension if there exists a homomorphism 
~b : H ~ G such that ~o~b is the identity map on H. In fact, this property is equivalent 
to the fact that the group G may be expressed as a semi-direct product  G = F/x  H, 
where H is isomorphic to the group H [31, p. 149], [35, p. 23]. 

An extension is called a central extension if F is a subgroup of the center of the 
group G [31, p. 145]. A central splitting extension in fact means that the group G is 
isomorphic to the direct product F x H. 

For  more theory of group extensions the reader is referred to ref. [31, pp. 121- 
149]. 

Appendix B. Res t r ic t ion  m e t h o d  for  constructing representations 

Let G be a group generated by the set ~ = {gl, -- -, gk} of  generators satisfying 
the relation ~ o  = {rl ,  . . . ,  rt}. (A relation is understood as a word in generators. 
The group G is then a factor group of the free group generated by these generators 
over its normal  subgroup generated by the relations.) Let H be a group generated 
also by the set G of generators satisfying relations ~/¢ = {rl, . . . ,  rt, rl+l, . . . ,  rt+m }. 
In the group G, the words r M ,  . . . ,  rl+m are not equal to the identity element. The 
group H is isomorphic to the factor group G / N ,  where N is the normal  subgroup of 
G generated by rt+l, rl+2,. . . ,  rz+m (see von Dyck's theorem [38, p. 130]). 

Let • by a map,  ~I, : G --, F, where F is a group. The domain of the map may be 
extended to all words (in the free group) in the generators by replacing each genera- 
tor gi in the word by its image ~(gi). A map defined in this manner  determines a 
homomorph i sm K ---, F,  where K is a group generated by G and a set of relations 
7~K, if and only ~I,(r) = 1r for all r E 7Z~:. 

Let ~o : H ---, F be a homomorphism.  Then, because 7v,.o c ~ r ,  it defines the so- 
called e x p a n d e d h o m o m o r p h i s m  P ( ~ )  : G ---, F,  which satisfies the following equa- 
tions P(qo)(rl+j) = 1v,j  = 1, . . . ,  m. Moreover, this homomorphism is the only one 
because each homomorphism is defined by images of the group generators, and the 
generators are the same for the groups H and G. In this manner  the map  P: Hom(H,  
F)  ~ Horn(G, F) is defined. 

Conversely, if any homomorphism ~b:G ~ F satisfies the conditions 
~b(rt+j) = 1F, j = 1, 2, . . . ,  m, then it defines (one) the so-called restr icted homo- 
morphism Q(~b) : H ~ F (~b is called H-restr ictable and for any homomorph ism 

: G ~ F the elements ~(rl+j), j = 1, 2, . . . ,  m, of F are called H-restr ic t ion 
condit ions.)  Let the set of all H-restrictable homomorphisms G ---, F be denoted as 
HomLr(G, F). Then, in the same way as above a map Q: HomH(G, F) ~ Horn(H, F) 
is defined. 
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It is easy to prove that for any ~o E Hom(H,  F), Q(P(~o)) = % and for any 
~b E Homer(G, F), P(Q(~)) = ~b, i.e. there is a one-to-one correspondence between 
the set Hom(H,  F) and Hom~(G, F). 

Particularly, i fF  = GL(d, T) and F = GL(d, T)/Z(d, T), where d is a non-nega- 
tive integer and Z(d, T) is the center of the general linear group GL(d, T) over the 
field T, the word "homomorphism" may be replaced by words "ordinary d-dimen- 
sional representation over the field T" and "projective d-dimensional representa- 
tion over the field T", respectively. Moreover it is obvious that if the representation 
of H is irreducible, then the corresponding expanded representation of G is also 
irreducible. 

Finally, let us prove the following statement: Let Tbe an algebraically closed field 
of the characteristic O. 1fan H-restrictable ordinary representation of the group G 
over the field T is irreducible, then the corresponding restricted representation of the 
group H is also irreducible. 

Proof 
Let [` be an H-restrictable irrep of G, X its character. Let hi, i = 1, 2 , . . . ,  [HI, be 

elements of G/N - H. Because [` is H-restrictable, we have [`(a) = [`(b) = :  ['(hi) 
for a, b E hi. Because I" is an irrep of G we have [35, p. 221 ] 

Z x(g)x(g-1) = IGI- 
gEG 

Then 

Inl 1 Inl 
Z X(hi)X(h;1) = ~ Z [NIx(hi)x(hT1) 
i=1 i=1 

= 1 Zx(g)x(g_I )  - I a l - I n l .  
INI INI 

Using the irreducibility criterion of characters [35, p. 221] it follows that the corre- 
sponding representation of the group H is irreducible. [] 

That means that there is a one-to-one correspondence between irreps of the 
group H and H-restrictable irreps of the group G. This correspondence may be used 
for derivation of all irreps of H from knowledge of the irreps of G by excluding the 
irreps of G which are not H-restrictable. This approach to the construction ofirreps 
of H from irreps of G is called the restriction method. 
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